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Abstract
As speech recognition systems are used in ever more applica-
tions, it is crucial for the systems to be able to deal with ac-
cented speakers. Various techniques, such as acoustic model
adaptation and pronunciation adaptation, have been reported to
improve the recognition of non-native or accented speech. In
this paper, we propose a new approach that combines accent de-
tection, accent discriminative acoustic features, acoustic adap-
tation and model selection for accented Chinese speech recogni-
tion. Experimental results show that this approach can improve
the recognition of accented speech.

1. Introduction
Accent is by far the most critical issue for the state-of-the-art
Chinese automatic speech recognition (ASR) systems. This is
because Chinese is a language with so many dialects including
Mandarin, Wu (spoken by Shanghainese), Yue (spoken by Can-
tonese), Min (spoken by Taiwanese), etc. Although the official
spoken language is Putonghua (also called Standard Mandarin
or Mandarin in the speech recognition literature), it is spoken
extremely differently by speakers living in different dialectal
regions of China. As a result, current ASR systems trained on
Putonghua or Standard Mandarin often experience a dramatic
accuracy loss for speakers with strong accents.

Active research has been carried out on dialectal or for-
eign accented speech recognition during the past few years.
The proposed methods vary from simply collecting data in that
accent and training a recognizer, to various ways of adapt-
ing recognizers trained on unaccented speech. Wang, Schultz,
and Waibel [1] investigated German-accented English speakers
in the VERBMOBIL (conversational meeting planning) task.
Tomokiyo and Waibel [2] examined the task of recognizing
Japanese-accented English in the VERBMOBIL domain. In
both tasks, it was found that training on non-native speech data,
achieves the most obvious gains in performance on accented
data. The simplest use of adaptation was merely the direct use
of MLLR (Maximum Likelihood Linear Regression) to adapt
individually to each test speaker. In [3], in order to recognize
Shanghainese-accented Putonghua, Huang et al. applied stan-
dard speaker MLLR adaptation to a Microsoft Whisper system
that had been trained on 100,000 sentences from 500 speakers
living in the Beijing area. In [1, 2], MLLR was adapted not just
to the single accented test speaker, but to a larger number of ac-
cented speakers. Research in [1, 2, 3] shows the effectiveness
of MLLR or MAP (Maximum A Posteriori) adaptation on ac-
cented speech. but it did not report whether combining MLLR
and MAP could be helpful for accented ASR.

While some promising results have been published on ac-

cented speech recognition using the above approaches, the
recognition accuracy on accented speech is still low and defi-
nitely needs further improvement. In particular, some research
issues remain open. First, more sophisticated forms of MLLR
or MAP may be applied, such as MLLR using phone-specific
transforms rather than a single global transform. Furthermore,
our research shows that current adaptation schemes have varied
performance on different groups of speakers. Second, the effect
of combining MLLR and MAP in accented ASR needs to be
explored. Third, the accent of each speaker should be treated as
a matter of degree. Previous work on accented Chinese speech
recognition [3, 4, 5, 6] typically treats speakers from a given di-
alectal region as a single class. In reality, these speakers clearly
have different degrees of accent.

In this work we optimized the MAP/MLLR combination
for our task. Then, building on this optimal MAP/MLLR com-
bination, we developed new approaches to detecting and utiliz-
ing degree of accent in accented ASR. A series of new algo-
rithms is proposed: phoneme-based automatic accent detection,
formant-augmented acoustic features for accented speech, and
accent-based model selection during acoustic model decoding.

For the sake of simplifying our experiments we focus here
only on one form of accented Putonghua, namely the accent
of people of Shanghai whose native language is Shanghainese,
which belongs to the Wu dialect group, a group with 87 million
speakers. Thus all experiments in this paper were performed on
Wu-accented conversational Chinese speech. Nevertheless, we
believe that our proposed approaches will also be helpful for ac-
cented speech with other Chinese dialects or in other languages.

2. Data Collection and Transcription

In this paper, we use spontaneous speech data collected from
50 male and 50 female speakers of Wu-accented Standard Chi-
nese, henceforth Putonghua. The spontaneous speech consisted
of free-form monologues where the speaker was asked to dis-
cuss a topic of their choice from a small set of predetermined
topics. It was recorded at 16KHz using a head-mounted micro-
phone. The data were orthographically transcribed, and phonet-
ically transcribed into syllable initials (onsets) and finals (nu-
cleus+coda) — henceforth “IF” refers to initial-final phoneset.
Canonical pinyin transliterations were also derived from the or-
thographic transcription. Finally, speakers were classified by
experts into their “Putonghua level” on a 6-point scale rang-
ing from 1A (most standard) to 3B (least standard); all of our
speakers fell in the range 2A–3B. Of the 100 speakers, 80 were
used for training data and the remaining 20 for test data. Further
details on the data can be found in [7].



3. Features of Accentedness
One of the phonetic properties of Shanghai-accented Mandarin
is the tendency to replace the standard retroflex fricatives and
affricates sh/ch/zh with their alveolar equivalents s/c/z. In a
sociolinguistic study [8], Starr and Jurafsky have shown that
the amount of retroflexion correlates with various socioeco-
nomic factors, such as age, gender and education level. Higher
amounts of retroflexion (i.e., more standard pronunciation) are
found in younger speakers, female speakers and more educated
speakers; see Figure 1. Starr and Jurafsky argue for economic
development being the primary factor underlying the shift to-
wards more standard pronunciation. Given this work, it turns

Figure 1: Retroflex in spontaneous speech by age category

out that simple but robust measures of degree of accentedness
are the proportion of alveolar affricates and fricatives in the
speech of a given speaker, or in other words:

C(s)
C(s)+C(sh)

, C(z)
C(z)+C(zh)

, C(c)
C(c)+C(ch)

where C(l) is the count of the label l in the transcription for
each speaker, l = s, z, c, sh, zh, ch.

Other similar measures also correlate with accentedness.
Thus, for example, Shanghai speakers often substitute the coda
eng for en and ing for in, and vice versa; the alveolar-to-dental
substitution is about twice as common as the dental-to-alveolar
substitution in our data. Clusters based on retroflex/alveolar ra-
tios plus nasal count ratios—see Section 4—correlated some-
what better with human judgments of accentedness than did
clusters based on retroflex/alveolar ratios alone. However, the
inclusion of the nasal data did not correlate with better ASR
performance, so we will not report on this further here.

4. Automatic Identification of Accentedness
In this section, we explore the methods of detecting accented-
ness degree. For simplification, we classified the speakers into
two groups: “more standard” with “Putonghua level” 2A–2B
and “more accented” with “Putonghua level” 3A–3B. Previous
work on accentedness detection such as [5] has mostly focused
on using MFCC coupled with GMM’s or other classifiers to
classify a speaker’s utterances as belonging to a specific accent
type. We experimented with using GMM classifiers with MFCC
plus F0 (pitch) as the input features. On the test speakers, the
accuracies are 69% for the “more standard group” and 86% for
the “more accented” group.

In our approach, we use the alveolar/retroflex proportions
discussed in the previous section. Since we cannot assume
manual transcriptions for target speakers, the ratios are com-
puted from decoding lattices generated using our baseline MBN
model (introduced in Section 6.1). The single best transcription
is very errorful, but in previous work [9, 10] it has been shown
that if one computes counts for strings over a lattice rather than

over the single best path, one can generally improve one’s es-
timate of the population statistics. Following [10], counts are
computed for a segment α by summing the probability of each
path π in the lattice, multiplied by the number of times α occurs
on π. Counts for each speaker are then derived in the obvious
way by summing the thus-derived lattice counts. Thus we con-
struct a “count” C(α|L) for a given label α on a path π in a
lattice L as follows:

C(α|L) =
X

π∈L

p(π)C(α|π)

where C(α|π) is the number of times α is seen on path π. In
this way, phone population estimates can be derived for each
lattice and hence for each speaker, and the requisite ratios com-
puted.

Given the counts for each speaker, we used Cluto 2.1.1 [11]
to decide upon two “clusters” each (more accented, more stan-
dard) for the training and testing data. By default Cluto’s vclus-
ter uses a repeated bisections method with a cosine distance
measure. The agreement between the “clusters” and human as-
signment of accentedness is fairly good: on the test speakers,
the accuracy of the clustering is 78% for the “more standard
group” and 72% for the “more accented” group. Corresponding
ASR results will be shown and discussed in Section 6.4.

5. Model selection based on accentedness
To make use of the prior knowledge of accentedness, we pro-
pose a model-selection algorithm. Suppose that there are M

different acoustic models, θ1, θ2, ... , θM , given observation x,
we want to find the best acoustic model according to Eq. 1,

θMAP = argmax
k=1,2,··· ,M

p(θk|x)

= argmax
k=1,2,··· ,M

X

a

p(θk|a)
| {z }

θk⊥x|a

p(a|x)
| {z }

accentedness classifier

(1)

where a is the accentedness variable. For a binary case classifi-
cation in Section 4, we have M=2,

a =

(

1 if the speaker is “more standard”
2 if the speaker is “more accented”

and
p(θk|a) = δ(k − a)

To make Eq. 1 work, first, we need a reliable accentedness clas-
sifier, as described in the previous section; second, we need to
find the acoustic model θk, which is most appropriate for the
degree of accentedness. In Section 6.2 and 6.3, we show how
to find two acoustic models that favor different accent groups.
And Section 6.4 reports the results of model-selection experi-
ment, showing the effectiveness of the accentedness classifier.

6. Experiments
6.1. Baseline system

A word bigram language model is used in all the experiments.
The test and training corpora were segmented using a maxi-
mum matching algorithm using a fixed dictionary consisting
of 50,647 entries developed at Tsinghua University. Language
model training corpora consisted of the following conversa-
tional Putonghua data with 1.22 million characters:



• Mandarin HUB5 (200 telephone conversations of up to
30 minutes each)

• 100 hours of conversational Putonghua speech collected
by Hong Kong University of Science and Technology.

• The transcriptions from the 6.3 hours of training data
from our Wu-accented speech corpus.

Standard MFCC-based acoustic models with 14 mixtures
per state were constructed using HTK version 3.2 [12]. Two
baseline acoustic model training sets were used:

• MBN: 1997 Mandarin Broadcast News corpus (Hub-
4NE), consisting of 30 hours of speech from mostly
trained speakers.

• WU: 6.3 hours of Wu-accented training data.

The MBN data was chosen since it matches our data in one
respect, namely that it is wideband recording. The baseline re-
sult for the MBN acoustic model was 61.0% Character Error
Rate (CER — the standard measure of performance in Chi-
nese speech recognition). For the Wu-accented training data,
the CER was 44.2%.

6.2. Adaptation of Acoustic Models using Standard
MAP/MLLR

Previous research [1] suggests that MLLR can be used on
groups of speakers in a training set to help adapt acoustic mod-
els to foreign accent. However, applications of MLLR in this
multi-speaker adaptation environment have been limited to a
single global transform. Huang et al. [3] used MLLR with
65 phone-based transforms on individual test speakers, but they
turned off the MLLR in their standard baseline system.

In this section, we explore adaptation techniques in both
speaker independent (SI) and speaker dependent (SD) systems.
We first show that combining MLLR with multiple transforms
and MAP can improve the recognition performance. We then
show that the gain we get from speaker independent adapta-
tion can be further improved with speaker dependent adaptation.
The experiments contrast two types of adaptation: adapting out-
of-domain acoustic model (MBN) to indomain (Wu) data; and
adapting in-domain (Wu) models on speakers with varying ac-
cent.

We experimented with various supervised adaptation tech-
niques on the training set. Results are show in Table 1. This
table shows that IF-60, the MLLR with 60 phone-based trans-
forms, is significantly better than Auto-60 which is the MLLR of
60 transforms by data-driven clustering. Assigning transforms
to each IF allows the acoustic model to capture systematic vari-
ations associated with accent, while the data-driven regression
tree cannot take advantage of this prior knowledge. By apply-
ing MAP on top of both of the MLLRs, the gap is narrowed.
We also found that the best combined system is 1.7% absolute
better than applying MAP alone.

Baseline (no adapt.) + MAP + MLLR (Auto-60)
61.0% 45.4 % 51.2%

+ MLLR (IF-60) +MLLR+MAP(Auto-60) +MLLR+MAP(IF-60)
47.8% 44.5% 43.7%

Table 1: CER (%) Comparison of varies types of adaptation to
baseline acoustic models trained on MBN corpus

It has been reported [3, 2] that speaker dependent MLLR
adaptation is very useful for accented or non-native speech.
We performed speaker-dependent adaptation on both MMIF-60

and WU baseline models, where MMIF-60 represents the best
model of +MLLR+MAP (IF-60) in Table 1. Two global trans-
forms are used in our experiment, one for the silence model and
one for speech models. The results in Table 2 shows that we
can get about 3% absolute gain after speaker adapatation.

Table 2 also shows the speaker averaged CER for “more
standard” group and “more Accented” group, which have been
defined by retroflex ratio-based classifier from Section 4. It can
be observed from the table that MMIF-60 favors “more stan-
dard” speakers, and WU favors “more accented” speakers. For
comparison, the results of speaker independent systems for the
same groups of speakers are also listed in Table 2.

Speaker-indep. Speaker-dep.
Speaker Group WU MMIF-60 WU MMIF-60
more standard 39.6 37.5 36.5 34.7
more accented 49.0 50.3 46.0 47.0

Table 2: Speaker averaged CERs (%) of speaker dependent
(SD) and speaker independent (SI) systems

6.3. Study of accent discriminative acoustic features

The results in Table 2 show that there is an approximately
10% (absolute) gap between ”more accented” and ”more stan-
dard” speakers for all the SI and SD models. In this section
we present methods for improving the performance of “more
accented” speakers so that the gap can be narrowed.

In [13], Liu and Fung show that besides energy, formant
frequency and pitch are also helpful in a task for accent classi-
fication. It is reasonable to assume that some acoustic features,
such as formant parameters, pitch, word-final stop closure du-
ration etc., might be more discriminative for accented speech.
Therefore it may be helpful to add some of these features to the
accented speech recognizer. To test this assumption, we carried
out preliminary experiments by appending formant parameters
to MFCC features. The formant parameters were estimated au-
tomatically using the formant tracking algorithm in [14].

In our experiment, we choose first three formants (F 3
1 =

[F1 F2 F3]) and their amplitudes (η3
1 = [η1, η2, η3]) as the ac-

cent related features. The detailed definition and estimation for-
mulas of η are given in [14]. Two acoustic models were trained
by appending F 3

1 and η3
1 to the 39 dimensional MFCC vectors

respectively.
The results are given in Table 3. We observed that the

model with η3
1 was able to improve 5 out of the 11 speakers in

the “more accented” group; and the model with appended F 3
1

was only able to improve 2 out of the 11 speakers in the “more
accented” group. The performance was degraded for speakers
in the “more standard” group for both models.

The above experiment shows that formant amplitudes η3
1

might contain extra information for accent discrimination. We
therefore constructed a new accent favorable model WUη by
finding the best path in the union of the two decoding lattices
from the Wu baseline model and the new model with extra fea-
ture dimensions η3

1 . As shown in Table 3, compared to the WU
baseline model, the overall CER for this group is reduced to
48.2%, and the CERs were reduced for 8 out 11 speakers in the
“more accented” group.

A similar experiment was done for speaker dependent sys-
tem, where two models (WU and MFCC + η3

1) were adapted
for each individual test speaker and a WUη was obtained for
each test speaker. Compared to the WU baseline model test
speaker adaptation, the CERs were reduced for 9 out 11 speak-
ers in the “more accented” group.



MFCC+F 3
1 MFCC+η3

1 WUη

SI 49.4 48.9 48.2
SD - 46.1 45.6

Table 3: Average CER (%) of more accented speakers by mod-
eling both MFCC and formant parameters

6.4. Experiment on Model Selection

In this section, we use the following model selection strategies:

θ =

(

θMMIF−60 if the speaker is in cluster 1

θWU or θWUη if the speaker is in cluster 2
(2)

Table 4 shows the results of model selection between WU or
WUη and MMIF-60 models based on automatic accent detec-
tion results in Section 4. The results show that by using the ra-
tio of counts of particular fricatives and affricates as the input to
the accent classifier, we were able to improve the WU baseline
by 1% absolute in both SI and SD cases. Furthermore, formant
amplitude η is useful to discriminate “accented speakers”.

WU+MMIF-60 WUη + MMIF-60
GMM SCZ GMM SCZ

SI more acc. - 49 - 48.2
SI speaker avg. 44.4 43.8 44.3 43.4
SD more acc. - 46 - 45.6
SD speaker avg 41.3 40.9 41.2 40.7

Table 4: CER (%) for model selection based on accent detec-
tion. “WU+MMIF-60” is selection between WU and MMIF-60,
and “WUη + MMIF-60” is selection between WUη and MMIF-
60 according to Eq. 2. “SCZ” is selection based on accent detec-
tion using the retroflex count ratio. “GMM” is selection based
on GMM-based accent detection.

7. Conclusion
We report the approach of combining accent detection, accent
discriminative acoustic features, acoustic adaptation and model
selection to the problem of accented Chinese speech recogni-
tion. Experimental results show an 1.0∼1.4% absolute reduc-
tion of character error rate over the most state-of-the-art acous-
tic modeling techniques on Wu-accented Chinese speech. We
show that accent classification followed by model selection can
significantly improve performance when the degree of accent
varies significantly. The accent classification can be further en-
hanced by using techniques such as in [15] and the models by
using accent-specific decision trees. A future area will be to
investigate replacing our hard decision on accenting with soft
model selection integrated into ASR.

Figure 2: Summary of results
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